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Instability of multiple pulses in coupled nonlinear Schradinger equations
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An analytical technique for constructing multiple pulses is presented in this article; with it we uncover a
homoclinic bifurcation through which multihumped solitary waves can be generated in systems of coupled
nonlinear Schrdinger equations. A method is then developed to determinérbgability of multiple pulses
produced by this mechanism. The analysis is applied to two models that describe optical phenomena in
dispersive quadratic and Kerr media, respectively. It sheds considerable light upon the characteristics that
predispose multiple pulses arising in this class of systems to be unstable.

PACS numbeps): 42.65.Tg, 05.45.Yv

[. INTRODUCTION present a powerful analytical method for finding multipulses
and for studying their stability. A mechanism for the genera-
In the study of pulse propagation in birefringent opticaltion of widely spaced multihumped waves is identified,
communication lines, or wave interaction in materials withwhich arises from a “resonant semisimple” eigenvalue con-
nonlinear response of various kinds, models that take th@guration of the linearized steady-state equations. Informa-
form of two or more Schidinger equations coupled together tion gleaned from the existence analyses then feeds into the
in a nonlinear fashion are encountered frequently. Examplestability calculations, which indicate clearly that multipulses
include the systems that describe birefringence effects iare not likely to be stable in conservative coupled NLS sys-
Kerr (x'®) materials[1,2], incoherent beam interaction in tems. We apply the procedure to two specific examples,
photorefractive(saturable media[3], parametric wave inter- namely, multisoliton bound states ) second-harmonic
action and second-harmonic generatijd—6], phase- generation and in isotropic Kerr media; conditions for the
matched third-harmonic generation in Kerr mefdig three-  generation of multipulses will be uncovered, and the insta-
wave interaction iny® (quadrati¢ media[8,9], or x'?>  bility of these waves is proved completely.
+ x® competing nonlinearitieg10].
After suitable normalization, such models are written as

systems of partial differential equatioflBDES, Il. PRELIMINARY PROPERTIES

The special structure possessed by coupled NLS systems
o, %JrSjAuj — f;u;+f;(u)=0, (1) of.the type(l) will be crucial to the analysis thqt follows. In
z this section we state some important properties of, and as-
sumptions on, the systeid). For simplicity, let us restrict
wherej=1,...m, 0;>0, s;=*1, andu=(ug, ... Un)  our attention tsn=1, i.e., we consider pulse propagation in
with the u;(z,t) e C. The independent variablee R mea-  optical fibers or self-guided electromagnetic beams in slab
sures propagation distance, i.e., distance along the optic@laveguides. We shall also takg=+1 for all j (anomalous
fiber or longitudinal distance in a waveguid®;denotes the dispersion regime Specific examples are considered in Sec.
Laplacian operator i, wheret e R" represents retarded time v pelow.
(with n=1) or the transverse spatial varialgigith n=1,2). The simplest solitary waves are real-valued steady states
Furthermore, these systems are generally conservative apfl Eq. (1); they satisfy ordinary differential equations

expressible in the abstract infinite-dimensional Hamiltonianf\ODES which can be written as a first-order system
form

au u'=p, p'=0u—f(u), 3
—=JH' (), 2
where u is now taken to be real valued,®
where J is a skew-symmetric matrixy{ is a functional ofu, =diag(d4, . ..,0y), and the primes denote differentiation
and the prime denotes the variational derivative. with respect to the scalar variahildt is not hard to check the
A variety of solitary waves—standing or traveling waves following properties.
that are localized in thé direction(s)—have been found in (i) The fact that Eq(1) is a Hamiltonian PDE and, more-

many coupled nonlinear Schiimger (NLS) equations. In  over, does not contain any first-order derivatives guaran-
particular, multihumped vector soliton bound states were obtees that Eq(3) is also Hamiltonian—witiH (u, p) being the
served in numerical simulations of various systems, and areonserved quantity for the ODESs, say. This fact also implies
widely believed to be unstable in general. In this article, wethe next point.
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(ii) The system(3) is reversible int, i.e., it is invariant
under the transformatiob——t and u,p)—(u,—p); the
latter mapping can be represented by m>22m diagonal
matrix R whose firstm entries are+ 1 and whose remaining
m entries are— 1.

(iif) The linearization of Eq(3) about the origin produces
a matrix JV2H(0), where V2?H(0)=diag(—6,, ...
—60m1,...,1) and

0
—1

[
0

J
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for [t|>1. The constant®;(0) can be determined by the
asymptotic expansion ofi(t). We shall write V?H(0) as
V2H(0,x) in the future, since it will depend op.
Separating Eq(1), or equivalently Eq(2), into real and
imaginary parts and linearizing about a reshdependent
solutionu=®(t) gives an operator of the form

4 LR 0
L=gn' @)= o | | (6)

wherelLi and L, are self-adjointmX m matrix differential
operators; they depend ab.

is the usual symplectic matrix; we emphasize that the skew- Let n(L) denote the number of eigenvalues of a linear

symmetric operatord and 7 for the ODE(3) and the PDE
(2), respectively, are in general not the same matrices. Th
eigenvalues 08V2H(0) are= \/6;. If all the 6;>0, which

we shall assume, then zero is a hyperbolic equilibrium of

saddle type. Moreover, the eigenvectefscorresponding to

+ \/5J are distinct and linearly independent for all values of
6;>0, even when eigenvalues overlap; 1 appears asgtthe
entry and= \/FJ as the (+j)th entry of ef , and all other
entries are zero.

The following assumptions will also be needed.

(i) The systenm(3) is invariant under a discrete gro@of
symmetriesand each symmetry commutes with b&tand
V2H(0). More specifically, coupled NLS systems often have
7, symmetries that can be expressed as matrices of the for

(o af

where thed; are diagonalmxXm matrices whose nonzero
entries aret 1.

(ii) At some special parameter value, say- 0, the fol-
lowing properties are assumed to apgh). System(3) has a
solutionq(t) which is homoclinic to the origin, i.e., a “pri-
mary” pulse (usually single-humpedasymptotic to the zero
state. By virtue of symmetry{Sq(t): Se G} then forms a set

of homaoclinic orbits atu=0. (b) The orbita(t) is nonde-

d 0

0 d (4)

operatorL that have negative real part. Features of the PDEs
gl) that will be relevant to our stability analysis are the fol-
lowing.

(i) Invariance under translation int—t+t, for any con-
stantty. This symmetry generates an integral that is invariant
underz evolution, known as “momentum”; it also contrib-
utes a zero eigenvalue tg;, with corresponding eigenfunc-
tion d'(t) e ker(Lg).

(i) Invariance under some phag@etationa) transforma-
tion: (uq, ..., un)—(€'"%uy, ... e"u,) for any seR,
where they; are constants. This symmetry generates an in-
variant integral known as the “power” or “Manley-Rowe
invariant”; it also contributes a zero eigenvalueltp, with
r%orresponding eigenfunctiod’®(t) e ker(Lg), where T’
=diag(ys, - - . ¥m).

(iii) The essential spectra bf andL, lie on the positive
real line and are bounded away from zero. At the primary
pulse,n(Lg)>n(L,). This hypothesis usually holds true for
coupled NLS systems, with(Lg)=1 andn(L,)=0. One
way to show this is by diagonalizingg andL, and using
Sturm-Liouville theory together with the previous two prop-
erties of Eq(1) stated above. We remark that, due to E),
we haven(H"(d))=n(Lg)+n(L,). Thus,n(Lg)=1 and
n(L,)=0 imply n(H"(®))=1, which reflects the fact that
the primary pulse can be characterized as a “mountain-pass”
critical point of the functional{(u) and has Morse index
equal to 1: there is one direction near the pulse along which
the energyH decreases.

generate, i.e., the only bounded solution to the equation of

variations of Eq.(3) aboutq(t) is q’(t). This fact, in con-
junction with the conservative property of E(), implies
persistence of the primary pulsgfor u close to zero. The
primary pulses persisting fqr# 0 will be denotedy(t,«).
(c) The leading eigenvalues dV2H(0) are in resonant se-

misimple configuration. This means that the eigenvaluegSq(t): Se G} in a given ordef«}i—;

I1Il. HOMOCLINIC BIFURCATION

We shall construct multipulses by concatenating several
copies of the primary pulses, i.e., we seeK-pulse” solu-
tions of Eq. (3) that follow the primary “1-pulses”

n In phase space,

.....

whose real parts are of smallest size consist of two pointsvhere ;e G. In particular, the idea is to patch together
with equal modulus lying on the real line, and each point ispiecewise continuous solutions that lie close to the 1-pulses

actually composed ok overlapping eigenvalueg$with k

by analyzing a set of homoclinic bifurcation equations. The

=2). The algebraic and geometric multiplicities are the samdramework, developed by Ha[@5], Lin [11], and Sandstede

at these points, due to the properties of the eigenveeﬁ)rs

[12] (sometimes referred to as homoclinic Lyapunov-

described above, whence the description “semisimple.”Schmidt reduction, or the HLS methpt$ briefly described
This special spectral configuration allows us to derive thedelow. Suppose, in a slightly more general context, that at

expansions

k
q(t, )=, [bj(w) € e VAl + higher-order termg(5)
=1

parameter valug.=0 there exists a nondegenerate hetero-
clinic cycle connecting some hyperbolic equilibria
Py, ...,Pu. LetZ; be codimension-1 transverse sections to
the orbits att=0. When u# 0, these heteroclinic orbits
would typically not persist; however, we can still always find
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equilibrium point. Reversibility allows us to writg(—t, «)
=Rq(t,u), and the Hamiltonian structure provides a natural
candidate forW;(t,u), namely, VH(x;q(t,u),x), which
can be expanded &°H(0,u) x;q(t, x) +O(q(t, 1)|?). Fur-
thermore, we only need to considerunning from 1 to (N
—1), because, due to the Hamiltonian structufg(T,u)
=0forj=1,...,(N—1) implies &y(T,u)=0 as well[13].
Next, we substitute the asymptotic expansibnfor q(t,u).
This expansion is also needed, together with some expres-
sions[12,13 for R;, to derive estimates for all the remain-
der terms.

For clarity, from now on we shall concentrate on the case

FIG. 1. Piecewise continuous orbi@" at x~0. The solutions ~ of two coupled nonlinear Schdinger equations, i.em=2.
g; are shown with dashed curves, and the trace of the originaWithout loss of generality, also assurdg=1 (this can be
heteroclinic cycle with dotted curves. obtained by a rescalingthen a natural choice for our bifur-

cation parameter ig=/6,— 1, the difference between the

solutions{q;" (t,u)}i=1, ... m that lie in the stable or unstable eigenvalues of the linearization. Putting together the infor-
manifolds of theP;; moreover, it is possible to restrict any mation so far, we obtain the bifurcation equations
discontinuities to lie along one particular direction within

each transverse section. The jump sizes forghét, ) in (Mj_l(,u)J(Tj_l,M),J(Tj_l,,u»

3, will be denoteds”(w). It can also be shown that for each

i there is a unique boundeH; (t,«) that has the property of —(M. (T (T

being perpendicular to the tangent spaces of both the stable (M ()0 (Typ0) 0 (Tyo10))

and unstable manifolds. Next, it was provigl®] that with +0(e MT(e 2 Ti-14 e 22Tj))=0, (9)

|| small, choosing any sequenge={T}; ., such that the

T; are all sufficiently large, there exists a unique set of pieCeyhere A =min{\/6;,v6,} =min{1,(1+ &)}, T=min{T,:1
wise trajectoriedQ; (t, )}z lying close to theqg(t,u), <k=N-1}, M(x)=V2H(0u)Rx x;,, and 0(Ti,u) is

and whose times of flight between consecutive sections arg. vector whose components 're. ordered from first to
specified by the sequen¢2T;}; ;. Discontinuities only oc- fourth, by(w)e ™ Ti, by(u)e AT b, (w)e T, and — (1

cur at the sections, and time is parametrized so that the seg_—M)b’z(;)ef(lm')Tj 2” each symrﬁetr1y<- is dia;gonal with
tions Y, are always reached by thig at exactlyt=0. The .77 4 entries, as described in Ed4)- then «jx; 1

jump sizes are given by the formula :diag((sj(l),g}z) ,51(1) ,51(2)) where 510): +1 for 1=1,2.
o0 The bifurcation equations then become
E(T. ) =& () + V(=T 1), 6o (T) -1 0)) q
=Ty, ), 01 (=T )+ Ry(Ty ), (7) &(T.n)=—=2[8{V1by(n)%e ?Ti2
() 2 2,-2(1+w)Ti_
whereR; is a remainder term. Figure 1 illustrates this setup. + 011 (1+ 1) ba(p)%e S
To see whether interesting orbits exist whenis close to _ +2[5](1)b1(,u)2e*2Ti
zero, one would attempt to solve the system of algebraic
equations¢;(T,u)=0 for all j with some special type of + 81+ p1)2by(p)2e 2 WT]
sequencdT }jcy. AST/ . — 2XST: _o\ST,
Since here we are interested in homoclinic solutions, we +0(e " (e i-i+e ))=0 (10
consider only one equilibrium point, i.&2;=---=Py=0,
and the “heteroclinic cycle” becomes a collection of ho- for j=1,... N—1. Remember thafy=Ty=%, and ob-
moclinic loops{S(t): Se G}. To look for N-pulses, seT, ~ Serve that solving Eq10) for j=0, ... N—1 is equivalent
=Ty=, while T, ... Ty_; are assumed to be finite. We 0 Solving

then wish to solve N
(&t 6= 0l0by(p) e Tk

* —~T. + .
fj (M)"’(‘I’]( T]—lvlu‘)rq]—l(TJ—luu/)> +5(k2)(1+M)2b2(M)2e72(1+M)Tk
—(Vi(Tj, 1), 052 (=T, )+ R(T,u)=0 (8) L O(e-T)=0 11
for j=1, ... N. While this system of equations seems com- ) ) ) _
plicated, it can be simplified considerably by making use offo(rl)k=0(,2). - N=1. An important point to note is that, if
the abundant structure inherent in systems of coupled NLk =8y, then the leading order terms on the left hand side
equations, as described in Sec. Il. First, in this case théf Eq.(11) will be either strictly positive or strictly negative;
1-pulsespersistfor u#0. This means tha?(x)=0 and therefore arN-pulse exists only if, for eack, s ands@
qji(t,,u)z x;d(t, 1) wherex;e G. Now let us consider the takeop_posit&igns. 'I_'his means that tikeh _and the k+1)th
inner product terms; note that they represent informatiorgXcursions follow different primary orbits from the set
coming from the tails of the 1-pulses, i.e., from near the{Sq(t): Se G}. Next, we would like to apply the implicit
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function theorem(IFT) at ©u=0 and T=«, becauserl =
corresponds to all th&, beinge, which simply represents
the known 1-pulse solutiog(t). In order to do so, we need
to define a new variable such thatr =0 will correspond to

T=o0, Before introducing the appropriate transformation, we

remark that the solvability of Eq11) hinges on the follow-
ing fact. The transcendental equation
—1+c(v)r'+0(r®)=0, >0, »>0, (12
where c(v) is a smooth function withc(0)>1, does not
have(smal) positive solutions (v) whenv<0; whereas for
v>0, Eq.(12) can be solved by setting=r" and applying
the IFT atv=0 andpy=1/c(0). Note that, for the remainder
term to vanish, we requirg®’’—0 as v|0 (with >0
fixed), and this is certainly true i#(0)<1, i.e.,c(0)>1.
With this information in mind, iflb,(0)|<|b,(0)]|, defin-
ing
—2T

ba(m)3(1+ w)?
—_—, r=e s a]-

bl(M)z

leads to a simplified equation

c(u)= —e2(T D),

(axr)[— 1+ c(p)(agr)*1+0(r**)=0,

which is solvable, by taking, ()= (axr)* and applying the
IFT, if and only if >0, i.e., 0,<6,.
On the other hand, ifb,(0)|>|b,(0)|, letting

() bl(,U«)z

m)=—">">,
bo(u)*(1+ p)?

r:e_2(1+M)T' aj:e_2(1+ﬂ)(Tj_T),

gives a simplified equation
(an)[—1+c(p)(an) V71 +o(rt ) =0,

which is solvable, by taking,(u)=(ar)¥**# 1 and ap-
plying the IFT, if and only if 1/(2 x)—1>0, i.e.,u<0 or
equivalently6,>6,.

In summary, we make the following observations.

(i) For N-pulses to exists{") and 6(*) cannot be of the
same sign. This means that one & ,5(>) has to be—1,
i.e., anN-pulse must be odlternatingtype, as following the
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show uniqueness of aN-pulse, for any giverN and small
enoughu, up to symmetry of the systefi4].

IV. SPECTRAL ANALYSIS

To determine the stability of a real-valued solitary-wave
solution u=®(t) of Eq. (1), one first needs to study the
spectrum of the linearizatio(6),

50
J o L)
which depends od. The essential spectrum of such an op-
erator lies entirely on the imaginary axis; also, the discrete
spectrum is symmetric with respect to both real and imagi-
nary axes. Therefore, existence of any discrete spectrum off
the imaginary axis would imply instability. Operators like
Eq. (6) are usually not straightforward to analyze, even when
d(t) is the primary pulse, or ground state. In this section we
show that by dealing with the simpler self-adjoint operators
Lr andL,, and then putting this information together using a
criterion developed by Jones and Grillakis, the instability of
N-pulses can be demonstrated rigorously.

A sufficient condition, as stated by Jongkb], for the
instability of pulses in nonlinear Schiimger-type equations
is as follows: ifn(Lg) —n(L,)#0,1, thenl has a real posi-
tive eigenvalue, and thus the pulse is unstable. By the theory
developed by Alexander, Gardner, and Jojid, the spec-
trum of a linearized operator suchlag, L,, or £ evaluated
at anN-pulse resembles that of the same operator evaluated
at the 1l-pulse, with each eigenvalue copiddtimes but
slightly perturbed from its original spot, i.e., each single ei-
genvalue splits intd\. Since in our cas@(Lg) is already
greater tham(L,) for the primary pulse, the stability of bi-
furcating N-pulses will depend crucially on how the critical
eigenvalues at zero split. Note that for eachL@fandL,,
one eigenvalue will always stay at zero, by virtue of the
translation and phase invariances. Assuming that at the pri-
mary pulseLg andL, have the same number of eigenvalues
at zero, then instability occurs if either of the following is
true: (i) for Lg, at least one of the critical eigenvalues splits
to the negative side, dii) for L, at least one of the critical
eigenvalues splits to the positive side; both these possibilities
will ensure that the imbalance between negative eigenvalues
is greater than 1. These conditions can also be readily de-
rived from Grillakis’s result§17], which imply that the sum
of the numbers of negative critical eigenvalues fgr and

L=

same primary orbit during consecutive excursions would Nepositive critical eigenvalues for, gives the number of

cessitated()= 5{?)= + 1. At the same time, aN-pulse can-

not alternate in all of its components, because one o

oM 5(?) also needs to be- 1.

?airs of real eigenvalues fat.
Sandstedg¢18] established that the near-zero critical ei-
genvalues of a linearized operatgrevaluated at ai-pulse,

(if) The direction of bifurcation is determined by the rela- are determined by the zeros of

tive sizes ofb;(0) and b,(0), information which comes
from the primary solutiorg(t). If |by(0)|#|b,(0)|, the bi-
furcation is one sided, as shown abovelbf(0)|=|b,(0)|,
it is possible forN-pulses to exist a¥;= 6, and on both

E(N)=defA—AMI+R(\)],

where A is an NX N tridiagonal matrix,M is a Melnikov-

sides of this line in parameter space; more delicate analysis i¥Pe integral, andR(\) is a remainder terrfil8]. In the case

required in this case.

of a reversible syster# is in addition symmetric, and more-

(ii ) If multihumped solutions are generated from this ho-OVer the signs of its eigenvalues have a direct relationship to
moclinic bifurcation, then there is no limit on the number of the signs of its leading order entries, which are determined
humpsN that they may possess. In addition, it is possible toby a sequencda;:1<i<N-1}. This information, com-
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bined with the Sign oM, will give us the Signs of the critical Note that the |eading order terms of f&pfor LR andLl are
eigenvalues of.. The following quantities therefore need to of very similar form, but there is an important sign difference
be calculated: in the matrices that appear in their expressions. This, to-
gether with the fact that thil’s for Ly andL, will both be
M = fw (¥ (1,0),BY (1,0)) dt, negative, implies that, at aN-pulse, the critical eigenvalues
—o for Lg have anoppositedistribution from those ot ; thus
we need to determine the distribution of eigenvalues for only

B=(V. . (=T (T one of these operators.

A= (Wiaa =T X (T, For instance, let us choosg to study. From Eq(5), we
where Y (t, 1) solves the zero-eigenvalue probldniZ=0, S€€ thaiy(T;) ~e T, wherex®(uy) is the leading ei-
expressed as a first-order ODE, at parameter valye 9envalue aj=uy. Assuming Eq(4), we then obtain
W (t,u) solves the associated adjoint ODE, & a matrix

that arises from writing the general eigenvalue problefn

=\Z in the form of a first-order systetd’ =[D,f(u(t),u)  whereI'? is a diagonal matrix with positive entries and
+AB]Y; * +” refers to a solution in the stable manifold of & (T, ,uy)- @' (T;,un) <0 to leading order. Sincé <0,
the. equilibrium point,_ andLN.denotes the parameter yalue al the N-pulse will be unstable if the leading order termsapf
which theN-pulse exists. It is not hard to show thatifis @ contribute a negative sign for at least dn@hus, for at least
secondl—order self-adjoint I_mear_ differential operator, the”onei, d.d; ., has to contribute @ositivesign to the leading
W=J""Y (whereJ was defined in Sec. )il and order component in order to satisfy the criterion for instabil-
ity. If (as assumed in Sec) thed; are diagonal with=1 as
B:( 0 0)_ their nonzero entries, theshd,;, ; contributes a positive sign
-1 0 at leading order if and only if the leading order component
does not alternate during thi¢éh and (+ 1)th excursions.
Thus From Sec. Il we saw thatl-pulses must alternate, but not in
every component; here we further see that Nwpulse is
stable only when it is the leading order component that ex-
hibits strict alternation. Compare this with results for the
scalar phase-sensitive amplifier equatid8], which has

3= 2I"2d;d; ., & (T) - D'(Ty),

M= Jf (¥(1,0),BI¥(1,0)) dt

[~ only one component: although it does exhibit nonalternating

I P (1.0, 0 —I W(t,0)) dt<0. multipulses, only the strictly alternating-pulses are stable.
ForLg, we have V. EXAMPLES

Y=q'=JVH(q)=JV2H(0)q+0O(|q|?) The normalized equatiori$,6] describing the interaction

between a fundamental frequency wave and its second har-

s0W'=V2H(0)q+O(|q|?). Hence, as in Sec. Ill, using re- monic in dispersive quadratig{?) media can be written as

versibility, symmetry, and persistence of the 1-pulse dor P 2
#0, we derlve[19] i—W+r—W—9W+W*U:O, (13)
0z Jt?
a=(k{V?H(0)(—=J)V?H(O)R}«;. 1q(T)),q(T))
v % 1
+O( 3)1 1 I - _ 2:
|q IU&Z+S(9t2 av+2W 0.

where all quantities are evaluated @t uy, and «;, ki1
e G. Using the descriptions dF2H(0) andR contained in ~ This model is valid for the temporgpulses in optical fibeps
Sec. Il we can further calculate case within a suitable coordinate frame, and in the spatial
(beams in slab waveguidesase when “walk off” is ne-
~ o -0 glected. Herew(z,t) andv(z,t) represent the envelope am-
a= < “l_o o )Ki+1Q(Ti),Q(Ti)> +0(|q]?). plitudes of the fundamental and second-harmonic waves, re-

spectively; we have,s=*1, ¢>0 in the temporal case and
We saw that the kernel &f, containsI’®, so forL, we have

o=2 in the spatial case, a] « are real parameters which

we will take to be positivep incorporates the wave-vector
r'e r o mismatch between the two harmonics, and without loss of

Y:( ,) =( )q generality# can be scaled to 1. We shall consider only the
re U “bright-bright” r=s=+1 case in this article. Clearly;

=W, Up=v, 6;=1, 6,=a, and we letu=/a—1.

The ODEs describing the behavior of real-valued steady-
states

sinceq=(®,d’). This allows us to obtain

- 0 r?
a;= Ki(l"2 O)Ki+1Q(Ti)aQ(Ti)- W'=py, v'=p,, (14
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(@) ®) )
| | i’9—”+‘;T‘2’—3u+(a|v|2+b|u|2)u=o.

* O,I. T 0:‘- 1 Jz
FIG. 2. Spectra ofa) Lg and(b) L, at the 1-pulse. The crosses \nhenb=a, the system is known as the Manakov equations,
represent simple eigenvalues, and the thick line segments depigh s integrable; the stability of its 1-pulse solitons under
essential spectra. small Hamiltonian perturbations has been investigated in
[20]. Real-valuedz-stationary, solutions of Eq15) solve a
Pu=W—Wv, Pp,=av-— %WZ system of Hamiltonian ODESs, which are invariant under the
group of symmetrieG={l,diag(—1,1,—1,1),diag(1;- 1,1,
o _ —1),—1}. An explicit 1-pulse exists ate=p, with u(t)
are invariant under the reflectia® (w,v,py.P,)—>(=W.v, — _Ti4y_ 5,731 b)sechq/at). In addition, the equations
~Pw,P,), SO we takd5 ={I,S}. At u=0, the eigenvalues of also admit pulses that have a trivialor v component, but

the linearization of Eq(14) are in resonant semisimple con- we shall not be concerned with such solutions here. Numeri-

figuration, and there is an explicitly known 1-pulse . eyidence for the existence of multipulses has been pre-

=(w,u,w",v") with w(t)=(3/\/§)s_ecﬁ(_t/2) and v(t)  sented in[1]. We are interested in showing analytically the
= 3sect(t/2). Nondegeneracy of this primary solution can exjstence and stability di-pulses that may bifurcate from
be shown via a diagonalization procedure. Thpulses we  the aforementioned explicit 1-pulse upon varyiagor 3)
seek are solutions that closely follay(t) andSc(t) in some  neara=8. Now both 5](1) and 5].(2) may take either1 or
Ord.ef{"j}lgzl, " ,N(,I)Wh%e rjefl,S}. Ob(slgerve thak «; 3 —1asvalues; if bifurcation dfi-pulses is to occurs{”, 5>
=diag(d;”, 8/, 6", 6*)) where heres{V'==1 and o should be of opposite sign. We also havg0)=b,(0) in

=+1 for allj. Using Eq.(5) and the explicit expanS|_on of this case(becauseTzv), which is a rather degenerate situ-
q(t) at =0, we deducé,(0)=6+2 andb,(0)=6. Since

b.(0 b.(0 h Veis in S i tel H ation not treated in Sec. Ill. Nevertheless, the same tech-
lNl( I)|>| 2(. t)|f t e<0ang yS|s<|r11 _e(; b ;[e St lfJS that niques can be used to analyze this situation, at least partially;
-pulses exist foru <0, i.e., a<1 (=6), but no Q¥ they enable us to show that there are multipulses with two or

B ( i
=0 or a=46. Moreover, theseN IOUle"?S must have; three humps, and that these multihumped pulses are unstable.
—1 for allj. In other words, the multipulses are constructedpetails of these proofs, as well as the more complicated

by concatenating, alternately, a 1-pulse with pos.ivix/eom- analysis for multipulses with more than three humps, will be
ponent and a 1-pulse with negativecomponent; they ex- presented elsewhef@1].

hibit strict alternation in theisv components, but do not al-
ternate in thein components.

Turning to stability, we first check that the properties de-
scribed in Sec. Il are satisfied. Equatiods) are invariant
under the phase transformatiow,p)—(we's,ve?s), soT We introduced analytical methods for constructing multi-
=diag(1,2). The spectra dfg andL, at the primary pulse humped solitary-waves, and for studying their stability, in
are shown in Fig. 2. They were determined after diagonalizsystems of coupled NLS equations. We identified a specific
ing Lg andL,, and we point out that the diagonalization of mechanism whereby multipulses can be generated, namely, a
these operators is possible because(E§). has a pure-power homoclinic bifurcation occurring at a resonant semisimple
nonlinearity, and also the components of the 1-pulse are coreigenvalue scenario. A stability analysis was then under-
stant multiples of each othelin this exampIeW:\/iv_). taken, and the features of certain multipulses that lead to
Now since theN-pulses are found forr<<1, the leading ei- their instability were pointed out. It appears that the very
genvalues are- \Ja= * /6, and, referring to the eigenvec- conditions that guarantee the existence of multihumped
tors € given in Sec. II, we see that thecomponent is the pulses also imply that the waves will be unstable. We have
leading order one. Because there is no alternation, ithe demonstrated t_hat instabilities rel_ated to translation and
analysis of Sec. IV implies that all the multipulses are un-Phase symmetries of the system will always occur together;
stable. In fact, we find that foK-pulses, all but one of the furthermore, from the mstabmty criterion given in Sec. IV it
critical eigenvalues of » split to the negative side and, to would seem that thg likelihood of either kind of instability
mirror this, all but one of the critical eigenvalueslgfsplit ~ 9C€CUMNG 1S rather high. . ,
to the positive side. We therefore have a “worst possible ' N€Se techniques and observations were applied to two
case” of instability, which appears to stem from both the ©xamples from nonlinear optics that have received much at-

translation and phase symmetrigsanifested through.g tgntlion in recent yedarfs. 'Lhehexistence and instability of mul-
andL,, respectively, tipulses was proved for both systems.

A system of the following form has been usgt?] to Since the eigenvalues associated with translational and

model pulse propagation in birefringept®) (Kerr) media: _phase iljvariance are all unstable, this opens up the p_ossibil-
ity of using the multihumped pulses for all-optical steering or

switching devices. Indeed, the instabilities are related to
U Ju changes in the amplitudes of the individual humps in the
i—+—2—au+(a|u|2+ blv|?)u=0, (15)  pulse train as well as to changes in their relative position.
9z st The issue is then to determine which of these instabilities is

VI. CONCLUSIONS
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dominant. We believe that the analytical methods introduced It appears that the phase invariance of the underlying
here can also be used to decide this question; we will reporquation is responsible for the instability of the multihumped
on this elsewhere. pulses. If the phase invariance is broken, for instance by
We emphasize that the multihumped pulses might exhibitising phase-sensitive amplification, it is possible that multi-
unstable eigenvalues other than those described here. Indeddimped pulses are stalji3]. Stable pulses have also been
there is the possibility of additional unstable eigenvalues beebserved when the distances between consecutive pulses in

ing created near radiation modgz2,23. the pulse train become relatively smgiH].
[1] M. Haelterman and A. Sheppard, Phys. Rev.48 3376 (1990.
(19949. [12] B. Sandstede, Ph.D. thesis, University of Stuttgart, 1993.
[2] N. N. Akhmediev and J. M. Soto-Crespo, Phys. Rev4® [13] B. Sandstede, C. K. R. T. Jones, and J. C. Alexander, Physica
5742(1994). D 106, 167 (1997).

[3] E. A. Ostrovskaya and Y. S. Kivshar, J. Opt.1B77 (1999. [14] A. C. Yew, J. Diff. Eq.(to be published
[4] A. C. Yew, A. R. Champneys, and P. J. McKenna, J. Nonlin-[15] C. K. R. T. Jones, Ergod. Theor. Dyn. Sy8t, 119(1988.

ear Sci.9, 33(1999. [16] J. C. Alexander, R. A. Gardner, and C. K. R. T. Jones, J. Reine
[5] A. V. Buryak and Y. S. Kivshar, Phys. Lett. A97, 407 Angew. Math.410, 167 (1990.
(1995. [17] M. N. Grillakis, Commun. Pure Appl. Math3, 299 (1990.
[6] H. He, M. J. Werner, and P. D. Drummond, Phys. Reva4=  [18] B. Sandstede, Trans. Am. Math. S@&0, 429 (1998.
896 (1996. [19] A. C. Yew, Indiana U. Math. Jito be published
[7] R. A. Sammut, A. V. Buryak, and Y. S. Kivshar, J. Opt. Soc. [20] Y. A. Li and K. Promislow, Physica [124, 137 (1998.
Am. B 15, 1488(1998. [21] B. Sandstede and A. C. Ye@npublisheg
[8] A. V. Buryak, Y. S. Kivshar, and S. Trillo, Phys. Rev. L€tf, [22] D. Pelinovsky, Y. S. Kivshar, and V. Afanasjev, Physica D
5210(1996. 116, 121(1998.
[9] U. Peschel, C. Etrich, F. Lederer, and B. A. Malomed, Phys[23] T. Kapitula and B. Sandstede, PhysicalR4, 58 (1998; J.
Rev. E55, 7704(1997). Opt. Soc. Am. B15, 2757(1998.
[10] L. Berge O. Bang, J. J. Rasmussen, and V. K. Mezentsev[24] E. A. Ostrovskaya, Y. S. Kivshar, D. V. Skryabin, and W. J.
Phys. Rev. E55, 3555(1997. Firth, Phys. Rev. Lett83, 296 (1999.

[11] X.-B. Lin, Proc. R. Soc. Edinburgh, Sect. A: Mathl6 295 [25] J. K. Hale and K. Sakamoto, Jpn. J. Appl. Math367(1988.



