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Instability of multiple pulses in coupled nonlinear Schrödinger equations
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An analytical technique for constructing multiple pulses is presented in this article; with it we uncover a
homoclinic bifurcation through which multihumped solitary waves can be generated in systems of coupled
nonlinear Schro¨dinger equations. A method is then developed to determine the~in!stability of multiple pulses
produced by this mechanism. The analysis is applied to two models that describe optical phenomena in
dispersive quadratic and Kerr media, respectively. It sheds considerable light upon the characteristics that
predispose multiple pulses arising in this class of systems to be unstable.

PACS number~s!: 42.65.Tg, 05.45.Yv
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I. INTRODUCTION

In the study of pulse propagation in birefringent optic
communication lines, or wave interaction in materials w
nonlinear response of various kinds, models that take
form of two or more Schro¨dinger equations coupled togeth
in a nonlinear fashion are encountered frequently. Exam
include the systems that describe birefringence effects
Kerr (x (3)) materials@1,2#, incoherent beam interaction i
photorefractive~saturable! media@3#, parametric wave inter-
action and second-harmonic generation@4–6#, phase-
matched third-harmonic generation in Kerr media@7#, three-
wave interaction inx (2) ~quadratic! media @8,9#, or x (2)

1x (3) competing nonlinearities@10#.
After suitable normalization, such models are written

systems of partial differential equations~PDEs!,

is j

]uj

]z
1sjDuj2u juj1 f j~u!50, ~1!

where j 51, . . . ,m, s j.0, sj561, andu5(u1 , . . . ,um)
with the uj (z,t)PC. The independent variablezPR mea-
sures propagation distance, i.e., distance along the op
fiber or longitudinal distance in a waveguide;D denotes the
Laplacian operator int, wheretPRn represents retarded tim
~with n51) or the transverse spatial variable~with n51,2).
Furthermore, these systems are generally conservative
expressible in the abstract infinite-dimensional Hamilton
form

]u

]z
5J H 8~u!, ~2!

whereJ is a skew-symmetric matrix,H is a functional ofu,
and the prime denotes the variational derivative.

A variety of solitary waves—standing or traveling wav
that are localized in thet direction~s!—have been found in
many coupled nonlinear Schro¨dinger ~NLS! equations. In
particular, multihumped vector soliton bound states were
served in numerical simulations of various systems, and
widely believed to be unstable in general. In this article,
PRE 611063-651X/2000/61~5!/5886~7!/$15.00
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present a powerful analytical method for finding multipuls
and for studying their stability. A mechanism for the gene
tion of widely spaced multihumped waves is identifie
which arises from a ‘‘resonant semisimple’’ eigenvalue co
figuration of the linearized steady-state equations. Inform
tion gleaned from the existence analyses then feeds into
stability calculations, which indicate clearly that multipuls
are not likely to be stable in conservative coupled NLS s
tems. We apply the procedure to two specific examp
namely, multisoliton bound states inx (2) second-harmonic
generation and in isotropic Kerr media; conditions for t
generation of multipulses will be uncovered, and the ins
bility of these waves is proved completely.

II. PRELIMINARY PROPERTIES

The special structure possessed by coupled NLS syst
of the type~1! will be crucial to the analysis that follows. In
this section we state some important properties of, and
sumptions on, the system~1!. For simplicity, let us restrict
our attention ton51, i.e., we consider pulse propagation
optical fibers or self-guided electromagnetic beams in s
waveguides. We shall also takesj511 for all j ~anomalous
dispersion regime!. Specific examples are considered in S
V below.

The simplest solitary waves are real-valued steady st
of Eq. ~1!; they satisfy ordinary differential equation
~ODEs! which can be written as a first-order system

u85p, p85Qu2 f ~u!, ~3!

where u is now taken to be real valued,Q
5diag(u1 , . . . ,um), and the primes denote differentiatio
with respect to the scalar variablet. It is not hard to check the
following properties.

~i! The fact that Eq.~1! is a Hamiltonian PDE and, more
over, does not contain any first-order derivatives int guaran-
tees that Eq.~3! is also Hamiltonian—withH(u,p) being the
conserved quantity for the ODEs, say. This fact also imp
the next point.
5886 ©2000 The American Physical Society
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PRE 61 5887INSTABILITY OF MULTIPLE PULSES IN COUPLED . . .
~ii ! The system~3! is reversible int, i.e., it is invariant
under the transformationt°2t and (u,p)°(u,2p); the
latter mapping can be represented by a 2m32m diagonal
matrix R whose firstm entries are11 and whose remaining
m entries are21.

~iii ! The linearization of Eq.~3! about the origin produce
a matrix J¹2H(0), where ¹2H(0)5diag(2u1 , . . . ,
2um,1, . . . ,1) and

J5S 0 I

2I 0D
is the usual symplectic matrix; we emphasize that the sk
symmetric operatorsJ andJ for the ODE~3! and the PDE
~2!, respectively, are in general not the same matrices.
eigenvalues ofJ¹2H(0) are6Au j . If all the u j.0, which
we shall assume, then zero is a hyperbolic equilibrium
saddle type. Moreover, the eigenvectorse j

6 corresponding to
6Au j are distinct and linearly independent for all values
u j.0, even when eigenvalues overlap; 1 appears as thej th
entry and6Au j as the (m1 j )th entry ofe j

6 , and all other
entries are zero.

The following assumptions will also be needed.
~i! The system~3! is invariant under a discrete groupG of

symmetries, and each symmetry commutes with bothR and
¹2H(0). More specifically, coupled NLS systems often ha
Z2 symmetries that can be expressed as matrices of the

S di 0

0 di
D , ~4!

where thedi are diagonalm3m matrices whose nonzer
entries are61.

~ii ! At some special parameter value, saym50, the fol-
lowing properties are assumed to apply.~a! System~3! has a
solution q̄(t) which is homoclinic to the origin, i.e., a ‘‘pri-
mary’’ pulse~usually single-humped! asymptotic to the zero
state. By virtue of symmetry,$Sq̄(t): SPG% then forms a set
of homoclinic orbits atm50. ~b! The orbit q̄(t) is nonde-
generate, i.e., the only bounded solution to the equation
variations of Eq.~3! about q̄(t) is q̄8(t). This fact, in con-
junction with the conservative property of Eq.~3!, implies
persistence of the primary pulse~s! for m close to zero. The
primary pulses persisting formÞ0 will be denotedq(t,m).
~c! The leading eigenvalues ofJ¹2H(0) are in resonant se
misimple configuration. This means that the eigenval
whose real parts are of smallest size consist of two po
with equal modulus lying on the real line, and each poin
actually composed ofk overlapping eigenvalues~with k
>2). The algebraic and geometric multiplicities are the sa
at these points, due to the properties of the eigenvectorse j

6

described above, whence the description ‘‘semisimpl
This special spectral configuration allows us to derive
expansions

q~ t,m!5(
j 51

k

@bj~m!e j
6e2Au j utu#1higher-order terms~5!
-

e

f

f

rm
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for utu@1. The constantsbj (0) can be determined by th
asymptotic expansion ofq̄(t). We shall write¹2H(0) as
¹2H(0,m) in the future, since it will depend onm.

Separating Eq.~1!, or equivalently Eq.~2!, into real and
imaginary parts and linearizing about a realz-independent
solutionu5F(t) gives an operator of the form

L5J H 9~F!5J S LR 0

0 LI
D , ~6!

whereLR and LI are self-adjointm3m matrix differential
operators; they depend onF.

Let n(L) denote the number of eigenvalues of a line
operatorL that have negative real part. Features of the PD
~1! that will be relevant to our stability analysis are the fo
lowing.

~i! Invariance under translation int: t°t1t0 for any con-
stantt0. This symmetry generates an integral that is invari
underz evolution, known as ‘‘momentum’’; it also contrib
utes a zero eigenvalue toLR , with corresponding eigenfunc
tion F8(t)Pker(LR).

~ii ! Invariance under some phase~rotational! transforma-
tion: (u1 , . . . ,um)°(eig1su1 , . . . ,eigmsum) for any sPR,
where theg j are constants. This symmetry generates an
variant integral known as the ‘‘power’’ or ‘‘Manley-Rowe
invariant’’; it also contributes a zero eigenvalue toLI , with
corresponding eigenfunctionGF(t)Pker(LR), where G
5diag(g1 , . . . ,gm).

~iii ! The essential spectra ofLR andLI lie on the positive
real line and are bounded away from zero. At the prima
pulse,n(LR).n(LI). This hypothesis usually holds true fo
coupled NLS systems, withn(LR)51 and n(LI)50. One
way to show this is by diagonalizingLR and LI and using
Sturm-Liouville theory together with the previous two pro
erties of Eq.~1! stated above. We remark that, due to Eq.~6!,
we haven„H 9(F)…5n(LR)1n(LI). Thus, n(LR)51 and
n(LI)50 imply n„H 9(F)…51, which reflects the fact tha
the primary pulse can be characterized as a ‘‘mountain-pa
critical point of the functionalH(u) and has Morse index
equal to 1: there is one direction near the pulse along wh
the energyH decreases.

III. HOMOCLINIC BIFURCATION

We shall construct multipulses by concatenating seve
copies of the primary pulses, i.e., we seek ‘‘N-pulse’’ solu-
tions of Eq. ~3! that follow the primary ‘‘1-pulses’’

$Sq̄(t): SPG% in a given order$k i% i 51, . . . ,N in phase space
where k iPG. In particular, the idea is to patch togeth
piecewise continuous solutions that lie close to the 1-pu
by analyzing a set of homoclinic bifurcation equations. T
framework, developed by Hale@25#, Lin @11#, and Sandstede
@12# ~sometimes referred to as homoclinic Lyapuno
Schmidt reduction, or the HLS method! is briefly described
below. Suppose, in a slightly more general context, tha
parameter valuem50 there exists a nondegenerate hete
clinic cycle connecting some hyperbolic equilibr
P1 , . . . ,PM . Let S i be codimension-1 transverse sections
the orbits at t50. When mÞ0, these heteroclinic orbits
would typically not persist; however, we can still always fin
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5888 PRE 61YEW, SANDSTEDE, AND JONES
solutions$qi
6(t,m)% i 51, . . . ,M that lie in the stable or unstabl

manifolds of thePi ; moreover, it is possible to restrict an
discontinuities to lie along one particular direction with
each transverse section. The jump sizes for theqi

6(t,m) in
S i will be denotedj i

`(m). It can also be shown that for eac
i there is a unique boundedC i(t,m) that has the property o
being perpendicular to the tangent spaces of both the st
and unstable manifolds. Next, it was proved@12# that with
umu small, choosing any sequenceT5$Tj% j PZ such that the
Tj are all sufficiently large, there exists a unique set of pie
wise trajectories$Qj

6(t,m)% j PZ lying close to theqi
6(t,m),

and whose times of flight between consecutive sections
specified by the sequence$2Tj% j PZ . Discontinuities only oc-
cur at the sections, and time is parametrized so that the
tions S i are always reached by theQj

6 at exactlyt50. The
jump sizes are given by the formula

j j~T,m!5j j
`~m!1^C j~2Tj 21 ,m!,qj 21

1 ~Tj 21 ,m!&

2^C j~Tj ,m!,qj 11
2 ~2Tj ,m!&1Rj~T,m!, ~7!

whereRj is a remainder term. Figure 1 illustrates this set
To see whether interesting orbits exist whenm is close to
zero, one would attempt to solve the system of algeb
equationsj j (T,m)50 for all j with some special type o
sequence$Tj% j PZ .

Since here we are interested in homoclinic solutions,
consider only one equilibrium point, i.e.,P15•••5PM50,
and the ‘‘heteroclinic cycle’’ becomes a collection of h
moclinic loops$Sq̄(t): SPG%. To look for N-pulses, setT0
5TN5`, while T1 , . . . ,TN21 are assumed to be finite. W
then wish to solve

j j
`~m!1^C j~2Tj 21 ,m!,qj 21

1 ~Tj 21 ,m!&

2^C j~Tj ,m!,qj 11
2 ~2Tj ,m!&1Rj~T,m!50 ~8!

for j 51, . . . ,N. While this system of equations seems co
plicated, it can be simplified considerably by making use
the abundant structure inherent in systems of coupled N
equations, as described in Sec. II. First, in this case
1-pulsespersist for mÞ0. This means thatj j

`(m)50 and
qj

6(t,m)5k jq(t,m) wherek jPG. Now let us consider the
inner product terms; note that they represent informat
coming from the tails of the 1-pulses, i.e., from near t

FIG. 1. Piecewise continuous orbitsQj
6 at m'0. The solutions

qj
6 are shown with dashed curves, and the trace of the orig

heteroclinic cycle with dotted curves.
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equilibrium point. Reversibility allows us to writeq(2t,m)
5Rq(t,m), and the Hamiltonian structure provides a natu
candidate forC j (t,m), namely, “H„k jq(t,m),m…, which
can be expanded as¹2H(0,m)k jq(t,m)1O„uq(t,m)u2…. Fur-
thermore, we only need to considerj running from 1 to (N
21), because, due to the Hamiltonian structure,j j (T,m)
50 for j 51, . . . ,(N21) impliesjN(T,m)50 as well@13#.
Next, we substitute the asymptotic expansion~5! for q(t,m).
This expansion is also needed, together with some exp
sions@12,13# for Rj , to derive estimates for all the remain
der terms.

For clarity, from now on we shall concentrate on the ca
of two coupled nonlinear Schro¨dinger equations, i.e.,m52.
Without loss of generality, also assumeu151 ~this can be
obtained by a rescaling!; then a natural choice for our bifur
cation parameter ism5Au221, the difference between th
eigenvalues of the linearization. Putting together the inf
mation so far, we obtain the bifurcation equations

^M j 21~m!vW ~Tj 21 ,m!,vW ~Tj 21 ,m!&

2^M j~m!vW ~Tj ,m!,vW ~Tj ,m!&

1O„e2lsT~e22lsTj 211e22lsTj !…50, ~9!

where ls5min$Au1,Au2%5min$1,(11m)%, T5min$Tk :1
<k<N21%, M j (m)5¹2H(0,m)Rk jk j 11, and vW (Tj ,m) is
the vector whose components are, ordered from first
fourth, b1(m)e2Tj , b2(m)e2(11m)Tj , b1(m)e2Tj , and 2(1
1m)b2(m)e2(11m)Tj . If each symmetryk j is diagonal with
61 as entries, as described in Eq.~4!, then k jk j 11

5diag(d j
(1) ,d j

(2) ,d j
(1) ,d j

(2)) where d j
( l )561 for l 51,2.

The bifurcation equations then become

j j~T,m!522@d j 21
(1) b1~m!2e22Tj 21

1d j 21
(2) ~11m!2b2~m!2e22(11m)Tj 21#

12@d j
(1)b1~m!2e22Tj

1d j
(2)~11m!2b2~m!2e22(11m)Tj #

1O„e2lsT~e22lsTj 211e22lsTj !…50 ~10!

for j 51, . . . ,N21. Remember thatT05TN5`, and ob-
serve that solving Eq.~10! for j 50, . . . ,N21 is equivalent
to solving

1
2 ~j11•••1jk!5d k

(1)b1~m!2e22Tk

1d k
(2)~11m!2b2~m!2e22(11m)Tk

1O~e23lsT!50 ~11!

for k50, . . . ,N21. An important point to note is that, i
d k

(1)5d k
(2) , then the leading order terms on the left hand s

of Eq. ~11! will be either strictly positive or strictly negative
therefore anN-pulse exists only if, for eachk, d k

(1) andd k
(2)

takeoppositesigns. This means that thekth and the (k11)th
excursions follow different primary orbits from the set

$Sq̄(t): SPG%. Next, we would like to apply the implicit

al
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function theorem~IFT! at m50 and T5`, becauseT5`
corresponds to all theTk being `, which simply represents
the known 1-pulse solutionq̄(t). In order to do so, we nee
to define a new variabler such thatr 50 will correspond to
T5`. Before introducing the appropriate transformation,
remark that the solvability of Eq.~11! hinges on the follow-
ing fact. The transcendental equation

211c~n!r n1O~r v!50, v.0, n.0, ~12!

where c(n) is a smooth function withc(0).1, does not
have~small! positive solutionsr (n) whenn<0; whereas for
n.0, Eq. ~12! can be solved by settingr5r n and applying
the IFT atn50 andr051/c(0). Note that, for the remainde
term to vanish, we requirerv/n→0 as n↓0 ~with v.0
fixed!, and this is certainly true ifr(0),1, i.e.,c(0).1.

With this information in mind, ifub1(0)u,ub2(0)u, defin-
ing

c~m!5
b2~m!2~11m!2

b1~m!2
, r 5e22T, aj5e22(Tj 2T),

leads to a simplified equation

~akr !@211c~m!~akr !m#1O~r 11v!50,

which is solvable, by takingrk(m)5(akr )m and applying the
IFT, if and only if m.0, i.e.,u1,u2.

On the other hand, ifub1(0)u.ub2(0)u, letting

c~m!5
b1~m!2

b2~m!2~11m!2
,

r 5e22(11m)T, aj5e22(11m)(Tj 2T),

gives a simplified equation

~akr !@211c~m!~akr !1/(11m)21#1O~r 11v!50,

which is solvable, by takingrk(m)5(akr )1/(11m)21 and ap-
plying the IFT, if and only if 1/(11m)21.0, i.e.,m,0 or
equivalentlyu1.u2.

In summary, we make the following observations.
~i! For N-pulses to exist,dk

(1) and dk
(2) cannot be of the

same sign. This means that one ofdk
(1) ,dk

(2) has to be21,
i.e., anN-pulse must be ofalternatingtype, as following the
same primary orbit during consecutive excursions would
cessitatedk

(1)5dk
(2)511. At the same time, anN-pulse can-

not alternate in all of its components, because one
dk

(1) ,dk
(2) also needs to be11.

~ii ! The direction of bifurcation is determined by the rel
tive sizes ofb1(0) and b2(0), information which comes
from the primary solutionq̄(t). If ub1(0)uÞub2(0)u, the bi-
furcation is one sided, as shown above. Ifub1(0)u5ub2(0)u,
it is possible forN-pulses to exist atu15u2 and on both
sides of this line in parameter space; more delicate analys
required in this case.

~iii ! If multihumped solutions are generated from this h
moclinic bifurcation, then there is no limit on the number
humpsN that they may possess. In addition, it is possible
-

f

is

-

o

show uniqueness of anN-pulse, for any givenN and small
enoughm, up to symmetry of the system@14#.

IV. SPECTRAL ANALYSIS

To determine the stability of a real-valued solitary-wa
solution u5F(t) of Eq. ~1!, one first needs to study th
spectrum of the linearization~6!,

L5J S LR 0

0 LI
D ,

which depends onF. The essential spectrum of such an o
erator lies entirely on the imaginary axis; also, the discr
spectrum is symmetric with respect to both real and ima
nary axes. Therefore, existence of any discrete spectrum
the imaginary axis would imply instability. Operators lik
Eq. ~6! are usually not straightforward to analyze, even wh
F(t) is the primary pulse, or ground state. In this section
show that by dealing with the simpler self-adjoint operato
LR andLI , and then putting this information together using
criterion developed by Jones and Grillakis, the instability
N-pulses can be demonstrated rigorously.

A sufficient condition, as stated by Jones@15#, for the
instability of pulses in nonlinear Schro¨dinger-type equations
is as follows: ifn(LR)2n(LI)Þ0,1, thenL has a real posi-
tive eigenvalue, and thus the pulse is unstable. By the the
developed by Alexander, Gardner, and Jones@16#, the spec-
trum of a linearized operator such asLR , LI , or L evaluated
at anN-pulse resembles that of the same operator evalu
at the 1-pulse, with each eigenvalue copiedN times but
slightly perturbed from its original spot, i.e., each single
genvalue splits intoN. Since in our casen(LR) is already
greater thann(LI) for the primary pulse, the stability of bi
furcatingN-pulses will depend crucially on how the critica
eigenvalues at zero split. Note that for each ofLR and LI ,
one eigenvalue will always stay at zero, by virtue of t
translation and phase invariances. Assuming that at the
mary pulseLR andLI have the same number of eigenvalu
at zero, then instability occurs if either of the following
true: ~i! for LR , at least one of the critical eigenvalues spl
to the negative side, or~ii ! for LI , at least one of the critica
eigenvalues splits to the positive side; both these possibil
will ensure that the imbalance between negative eigenva
is greater than 1. These conditions can also be readily
rived from Grillakis’s results@17#, which imply that the sum
of the numbers of negative critical eigenvalues forLR and
positive critical eigenvalues forLI gives the number of6
pairs of real eigenvalues forL.

Sandstede@18# established that the near-zero critical e
genvalues of a linearized operatorL, evaluated at anN-pulse,
are determined by the zeros of

E~l!5det@A2lMI 1R~l!#,

whereA is an N3N tridiagonal matrix,M is a Melnikov-
type integral, andR(l) is a remainder term@18#. In the case
of a reversible system,A is in addition symmetric, and more
over the signs of its eigenvalues have a direct relationshi
the signs of its leading order entries, which are determin
by a sequence$ãi :1< i<N21%. This information, com-
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5890 PRE 61YEW, SANDSTEDE, AND JONES
bined with the sign ofM, will give us the signs of the critica
eigenvalues ofL. The following quantities therefore need
be calculated:

M5E
2`

`

^C~ t,0!,BY~ t,0!& dt,

ãi5^C i 11~2Ti ,mN!,Y i
1~Ti ,mN!&,

where Y(t,m) solves the zero-eigenvalue problemLZW 50,
expressed as a first-order ODE, at parameter valuem,
C(t,m) solves the associated adjoint ODE, andB is a matrix
that arises from writing the general eigenvalue problemLZW

5lZW in the form of a first-order systemY85@Duf „u(t),m…

1lB#Y; ‘‘ 1’’ refers to a solution in the stable manifold o
the equilibrium point, andmN denotes the parameter value
which theN-pulse exists. It is not hard to show that ifL is a
second-order self-adjoint linear differential operator, th
C5J21Y ~whereJ was defined in Sec. II!, and

B5S 0 0

2I 0D .

Thus

M5E
2`

`

^C~ t,0!,BJC~ t,0!& dt

5E
2`

` K C~ t,0!,S 0 0

0 2I DC~ t,0!L dt,0.

For LR , we have

Y5q85J“H~q!5J¹2H~0!q1O~ uqu2!

so C5¹2H(0)q1O(uqu2). Hence, as in Sec. III, using re
versibility, symmetry, and persistence of the 1-pulse form
Þ0, we derive@19#

ãi5^k i$¹
2H~0!~2J!¹2H~0!R%k i 11q~Ti !,q~Ti !&

1O~ uqu3!,

where all quantities are evaluated atm5mN , and k i ,k i 11
PG. Using the descriptions of¹2H(0) andR contained in
Sec. II we can further calculate

ãi5K k i S 0 2Q

2Q 0 D k i 11q~Ti !,q~Ti !L 1O~ uqu3!.

We saw that the kernel ofLI containsGF, so forLI we have

Y5S GF

GF8
D 5S G 0

0 G
D q

sinceq5(F,F8). This allows us to obtain

ãi5K k i S 0 G2

G2 0 D k i 11q~Ti !,q~Ti !L .
n

Note that the leading order terms of theãi for LR andLI are
of very similar form, but there is an important sign differen
in the matrices that appear in their expressions. This,
gether with the fact that theM ’s for LR andLI will both be
negative, implies that, at anN-pulse, the critical eigenvalue
for LR have anoppositedistribution from those ofLI ; thus
we need to determine the distribution of eigenvalues for o
one of these operators.

For instance, let us chooseLI to study. From Eq.~5!, we
see thatq(Ti);e2ls(mN)Ti, wherels(mN) is the leading ei-
genvalue atm5mN . Assuming Eq.~4!, we then obtain

ãi52G2didi 11F~Ti !•F8~Ti !,

where G2 is a diagonal matrix with positive entries an
F(Ti ,mN)•F8(Ti ,mN),0 to leading order. SinceM,0,
the N-pulse will be unstable if the leading order terms ofãi
contribute a negative sign for at least onei. Thus, for at least
one i, didi 11 has to contribute apositivesign to the leading
order component in order to satisfy the criterion for instab
ity. If ~as assumed in Sec. II! thedi are diagonal with61 as
their nonzero entries, thendidi 11 contributes a positive sign
at leading order if and only if the leading order compone
does not alternate during thei th and (i 11)th excursions.
From Sec. III we saw thatN-pulses must alternate, but not i
every component; here we further see that anN-pulse is
stable only when it is the leading order component that
hibits strict alternation. Compare this with results for t
scalar phase-sensitive amplifier equation@13#, which has
only one component: although it does exhibit nonalternat
multipulses, only the strictly alternatingN-pulses are stable

V. EXAMPLES

The normalized equations@5,6# describing the interaction
between a fundamental frequency wave and its second
monic in dispersive quadratic (x (2)) media can be written as

i
]w

]z
1r

]2w

]t2
2uw1w* v50, ~13!

is
]v
]z

1s
]2v

]t2
2av1

1

2
w250.

This model is valid for the temporal~pulses in optical fibers!
case within a suitable coordinate frame, and in the spa
~beams in slab waveguides! case when ‘‘walk off’’ is ne-
glected. Herew(z,t) andv(z,t) represent the envelope am
plitudes of the fundamental and second-harmonic waves
spectively; we haver ,s561, s.0 in the temporal case an
s52 in the spatial case, andu, a are real parameters whic
we will take to be positive;a incorporates the wave-vecto
mismatch between the two harmonics, and without loss
generalityu can be scaled to 1. We shall consider only t
‘‘bright-bright’’ r 5s511 case in this article. Clearlyu1

5w, u25v, u151, u25a, and we letm5Aa21.
The ODEs describing the behavior of real-valued stea

states

w85pw , v85pv , ~14!
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pw8 5w2wv, pv85av2 1
2 w2

are invariant under the reflectionS:(w,v,pw ,pv)°(2w,v,
2pw ,pv), so we takeG5$I ,S%. At m50, the eigenvalues o
the linearization of Eq.~14! are in resonant semisimple con
figuration, and there is an explicitly known 1-pulseq̄
5(w̄,v̄,w̄8,v̄8) with w̄(t)5(3/A2)sech2(t/2) and v̄(t)
5 3

2 sech2(t/2). Nondegeneracy of this primary solution ca
be shown via a diagonalization procedure. TheN-pulses we
seek are solutions that closely followq̄(t) andSq̄(t) in some
order $k j% j 51, . . . ,N , wherek jP$I ,S%. Observe thatk jk j 11

5diag(d j
(1) ,d j

(2) ,d j
(1) ,d j

(2)) where hered j
(1)561 and d j

(2)

511 for all j. Using Eq.~5! and the explicit expansion o
q̄(t) at m50, we deduceb1(0)56A2 andb2(0)56. Since
ub1(0)u.ub2(0)u, the analysis in Sec. III tells us tha
N-pulses exist form,0, i.e., a,1 (5u), but not for m
>0 or a>u. Moreover, theseN-pulses must haved j

(1)5
21 for all j. In other words, the multipulses are construct
by concatenating, alternately, a 1-pulse with positivew com-
ponent and a 1-pulse with negativew component; they ex-
hibit strict alternation in theirw components, but do not al
ternate in theirv components.

Turning to stability, we first check that the properties d
scribed in Sec. II are satisfied. Equations~13! are invariant
under the phase transformation (w,v)°(weis,ve2is), so G
5diag(1,2). The spectra ofLR and LI at the primary pulse
are shown in Fig. 2. They were determined after diagona
ing LR andLI , and we point out that the diagonalization
these operators is possible because Eq.~13! has a pure-powe
nonlinearity, and also the components of the 1-pulse are c
stant multiples of each other~in this examplew̄5A2v̄).
Now since theN-pulses are found fora,1, the leading ei-
genvalues are6Aa56Au2 and, referring to the eigenvec
tors e j

6 given in Sec. II, we see that thev-component is the
leading order one. Because there is no alternation inv, the
analysis of Sec. IV implies that all the multipulses are u
stable. In fact, we find that forN-pulses, all but one of the
critical eigenvalues ofLR split to the negative side and, t
mirror this, all but one of the critical eigenvalues ofLI split
to the positive side. We therefore have a ‘‘worst possi
case’’ of instability, which appears to stem from both t
translation and phase symmetries~manifested throughLR
andLI , respectively!.

A system of the following form has been used@1,2# to
model pulse propagation in birefringentx (3) ~Kerr! media:

i
]u

]z
1

]2u

]t2
2au1~auuu21buvu2!u50, ~15!

FIG. 2. Spectra of~a! LR and~b! LI at the 1-pulse. The crosse
represent simple eigenvalues, and the thick line segments d
essential spectra.
-

-

n-

-

e

i
]v
]z

1
]2v

]t2
2bv1~auvu21buuu2!v50.

Whenb5a, the system is known as the Manakov equatio
and is integrable; the stability of its 1-pulse solitons und
small Hamiltonian perturbations has been investigated
@20#. Real-valued,z-stationary, solutions of Eq.~15! solve a
system of Hamiltonian ODEs, which are invariant under t
group of symmetriesG5$I ,diag(21,1,21,1),diag(1,21,1,

21),2I %. An explicit 1-pulse exists ata5b, with ū(t)

5 v̄(t)5A2a/(a1b)sech(Aat). In addition, the equations
also admit pulses that have a trivialu or v component, but
we shall not be concerned with such solutions here. Num
cal evidence for the existence of multipulses has been
sented in@1#. We are interested in showing analytically th
existence and stability ofN-pulses that may bifurcate from
the aforementioned explicit 1-pulse upon varyinga ~or b)
neara5b. Now bothd j

(1) andd j
(2) may take either11 or

21 as values; if bifurcation ofN-pulses is to occur,d j
(1) ,d j

(2)

should be of opposite sign. We also haveb1(0)5b2(0) in

this case~becauseū5 v̄), which is a rather degenerate situ
ation not treated in Sec. III. Nevertheless, the same te
niques can be used to analyze this situation, at least parti
they enable us to show that there are multipulses with two
three humps, and that these multihumped pulses are unst
Details of these proofs, as well as the more complica
analysis for multipulses with more than three humps, will
presented elsewhere@21#.

VI. CONCLUSIONS

We introduced analytical methods for constructing mu
humped solitary-waves, and for studying their stability,
systems of coupled NLS equations. We identified a spec
mechanism whereby multipulses can be generated, name
homoclinic bifurcation occurring at a resonant semisim
eigenvalue scenario. A stability analysis was then und
taken, and the features of certain multipulses that lead
their instability were pointed out. It appears that the ve
conditions that guarantee the existence of multihump
pulses also imply that the waves will be unstable. We ha
demonstrated that instabilities related to translation a
phase symmetries of the system will always occur togeth
furthermore, from the instability criterion given in Sec. IV,
would seem that the likelihood of either kind of instabili
occurring is rather high.

These techniques and observations were applied to
examples from nonlinear optics that have received much
tention in recent years. The existence and instability of m
tipulses was proved for both systems.

Since the eigenvalues associated with translational
phase invariance are all unstable, this opens up the poss
ity of using the multihumped pulses for all-optical steering
switching devices. Indeed, the instabilities are related
changes in the amplitudes of the individual humps in
pulse train as well as to changes in their relative positi
The issue is then to determine which of these instabilitie

ict
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dominant. We believe that the analytical methods introdu
here can also be used to decide this question; we will re
on this elsewhere.

We emphasize that the multihumped pulses might exh
unstable eigenvalues other than those described here. In
there is the possibility of additional unstable eigenvalues
ing created near radiation modes@22,23#.
in

c.

ys

ev
d
rt

it
ed,
-

It appears that the phase invariance of the underly
equation is responsible for the instability of the multihump
pulses. If the phase invariance is broken, for instance
using phase-sensitive amplification, it is possible that mu
humped pulses are stable@13#. Stable pulses have also bee
observed when the distances between consecutive puls
the pulse train become relatively small@24#.
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